论文部分内容阅读
经典尺度不变特征变换(SIFT)特征匹配算法存在实时性差、纹理相似区域易发生误匹配的问题。为此,提出一种基于归一化分割(Ncut)的SIFT特征匹配算法。针对相同背景的运动视频,将归一化分割算法的图论聚类思想融入SIFT特征匹配中,根据运动趋势相似度对特征点进行Ncut运动聚类,再逐类分别匹配,通过缩小各特征点匹配过程中的搜索范围,减少匹配时间及不同特征类之间的误匹配。实验结果表明,该算法能提高匹配效率,对纹理相似区域的误匹配现象有较好的抑制作用,实现了相邻图像帧的特征稳定匹配。