论文部分内容阅读
基于不变矩理论,提出一种应用概率神经网络作为识别器的车牌汉字识别技术。利用Pseudo-Zernike矩特征的旋转不变性和良好的抗噪性能,将其作为车牌汉字识别的特征矢量,结合Pseudo-Zernike矩的快速算法和概率神经网络识别器快速学习和识别的性能,可适应实时环境下所获取的车牌汉字灰度图像的识别,具有较高的准确率,实验结果表明了该方法的有效性。