论文部分内容阅读
The use of data driven models has been shown to be useful for simulating complex engineering processes,when the only information available consists of the data of the process.In this study,four data-driven models,namely multiple linear regression,artificial neural network,adaptive neural fuzzy inference system,and K nearest neighbor models based on collection of 207 laboratory tests,are investigated for compressive strength prediction of concrete at high temperature.In addition for each model,two different sets of input variables are examined: a complete set and a parsimonious set of involved variables.The results obtained are compared with each other and also to the equations of NIST Technical Note standard and demonstrate the suitability of using the data driven models to predict the compressive strength at high temperature.In addition,the results show employing the parsimonious set of input variables is sufficient for the data driven models to make satisfactory results.