论文部分内容阅读
针对回归问题提出了非对称ν-无核二次曲面支持向量回归机。通过引入Pinball损失函数,使得位于ε带上方和下方的样本点具有不同的惩罚,从而得到更优的回归函数。进一步从理论上分析了参数p和ν控制ε带上方和下方错误样本点数目的上界。当p=0.5时,该方法就退化成了对称ν-无核二次曲面支持向量回归机,此时也证明了参数ν可控制支持向量的个数。事实上,该算法不需要使用核函数,从而避免了核参数的选择且不损失决策函数的可解释性。数值实验部分展示了该算法具有更好的拟合性能且耗时较少,也分析了参数p不会增加计算成本。