论文部分内容阅读
为实现作物含水率的无损检测,以6种水分胁迫水平的生菜为研究对象,利用高光谱成像技术和特征波长选取方法对生菜冠层含水率进行检测研究。采用掩模法去除高光谱图像的背景噪声,并对生菜冠层光谱图像进行光强校正。利用标准正态变量变换法(SNV)去除原始平均光谱数据的噪声,采用蒙特卡罗无信息变量消除法(MCUVE)剔除无关变量,结合基于最小绝对收缩和选择算法(LASSO)、连续投影法(SPA)、LASSO与SPA算法组合(LASSO-SPA)筛选特征变量,对数据进行降维处理,采用偏最小二乘法(PLS)建立5个生菜