论文部分内容阅读
为明确InSb芯片前表面结构缺陷和背面减薄工艺对InSb芯片变形的影响,本文采用降低InSb芯片法线方向杨氏模量的方式,基于热冲击下InSb芯片的典型形变特征来探索InSb芯片力学参数的选取依据.模拟结果表明:当InSb芯片法线方向杨氏模量取体材料的30%时,最大Von Mises应力值和法线方向最大应变值均出现在N电极区域,且极值呈非连续分布,这与InSb焦平面探测器碎裂统计报告中典型裂纹起源于N电极区域及多条裂纹同时出现的结论相符合.此外,InSb芯片中铟柱上方区域向上凸起,台面结隔离槽区域往下凹陷,该形变分布也与典型碎裂照片中InSb芯片的应变分布保持一致.因此,基于InSb芯片法线方向应变的判据除了能够预测裂纹起源地及裂纹分布外,还能提供探测器阵列中心区域Z方向应变分布及N电极区域Z方向的应变增强效应,为InSb芯片力学参数的选取提供了依据.
In order to clarify the influence of the front surface structure defects of InSb chip and the backside thinning process on the deformation of InSb chip, this paper adopts the way to reduce the Young’s modulus in the normal direction of InSb chip, and based on the typical deformation characteristics of InSb chip under thermal shock, The simulation results show that the maximum Von Mises stress and the maximum strain in the normal direction appear in the N electrode area when the Young’s modulus of the InSb chip is 30% Non-continuous distribution, which is consistent with the conclusion that the typical cracks in the InSb Focal Plane Detector originated from the N electrode region and multiple cracks simultaneously.In addition, the area above the indium column in the InSb chip protrudes upward and the mesa junction isolation Therefore, the criterion based on the normal direction strain of InSb chip can not only predict the origin of the cracks and the distribution of the cracks, but also provide the distribution of the strain distribution of the InSb chip in a typical fragmented photograph The Z-direction strain distribution in the central region of the detector array and the strain enhancement effect in the Z-direction of the N electrode region provide the basis for selecting the mechanical parameters of the InSb chip.