论文部分内容阅读
为了克服观测数据有限以及数据存在一定误差对参数反演结果的影响,提出了一种参数反演的有效算法.根据已知参数的先验分布和已经获得的有误差的监测数据,以贝叶斯推理作为理论基础,获得参数的联合后验概率密度函数.再利用马尔科夫链蒙特卡罗模拟对后验分布进行采样,获得参数的后验边缘概率密度,由此得到了参数的数学期望等有效的统计量.数值模拟结果表明,此算法能够有效地解决二雏非线性抛物型方程的参数识别反问题,且具有较高的精度.