论文部分内容阅读
In an effort to develop methods of solving the issue of cuttings bed in horizontal wells, a 3-D transient model is established to simulate the distribution features and the transport mechanism of cuttings bed. The CFD calculation results show that the cuttings at the cross-sectional area of the mutation location such as the drilling pipe connector would easily settle down to build up a cuttings bed and the transport performance of the cuttings in a horizontal well can only be improved to some extent by adjusting the working parameters without using any destruction tools for the cuttings bed, thus the issue of a cuttings bed can not be solved in general. Accordingly, a new approach to effectively prevent and actively destroy the cuttings bed by using the Cuttings Bed Impeller (CBI) is proposed, the sensitivity analysis of which is conducted to determine the optimal structural parameters and the best matched working parameters from a perspective of the wellbore cleaning. Results show that the use of the CBI produces a number of benefits, including the reduced drill string torque to avoid the stuck pipe incidents with corresponding improvement in hole quality, a shorter trip time, and less wear on the drill string, the top drive and the casing. This research offers theoretical guidelines for the design of destruction tools for the cuttings bed and for the wellbore cleaning control in the horizontal drilling.
In an effort to develop methods of solving the issue of cuttings bed in horizontal wells, a 3-D transient model is established to simulate the distribution features and the transport mechanism of cuttings bed. The CFD calculation results show that the cuttings at the cross- sectional area of the mutation location such as the drilling pipe connector would easily settle down to build up a cuttings bed and the transport performance of the cuttings in a horizontal well can only be improved to some extent by adjusting the working parameters without using any destruction tools for the cuttings bed, therefore the a new approach to effectively prevent and actively destroy the cuttings bed by using the Cuttings Bed Impeller (CBI) is proposed, the sensitivity analysis of which is conducted to determine the optimal structural parameters and the best matched working parameters from a perspective of the wellbore cleaning. Results show tha t the use of the CBI produces a number of benefits, including the reduced drill string torque to avoid the stuck pipe incidents with corresponding improvement in hole quality, a shorter trip time, and less wear on the drill string, the top drive and the casing . This research offers theoretical guidelines for the design of destruction tools for the cuttings bed and for the wellbore cleaning control in the horizontal drilling.