论文部分内容阅读
针对军事物联网中网络流量数据日趋复杂,数据特征维度高等特点,将卷积神经网络算法应用到网络流量分析领域。根据数据特点,构建出一种基于无池化层改进型卷积神经网络(NPCNN,No Pooling CNN)的网络流量异常检测模型。采用Modbus、NSL-KDD和KDDCup99数据集对NPCNN网络流量异常检测模型进行验证,同时将NPCNN网络结构同传统的卷积神经网络对比,通过对实验结果的分析发现,该模型在军事物联网网络流量异常检测中具有可行性和可扩展性。同时NPCNN网络在准确率性能方面优于传统的卷积