论文部分内容阅读
带障碍的聚类问题是一个具有实际应用价值的问题,因为现实世界中确实存在河流、山脉等之类的物理障碍,这们的存在会影响聚类结果的合理性。传统的聚类算法在进行空间数据的聚类时,往往忽略了障碍对于聚类结果的影响。本文讨论了不同障碍对数据点间连通性的不同影响,提出了带障碍的分级聚类算法OBHIEC。分级聚类方法使得需要计算障碍距离的点对数目减少,并能处理数据分布密度不同的情况。实验结果表明,OBHIEC算法能有效完成带障碍的聚类,并具有较好的增量特性。