论文部分内容阅读
The negative parity high spin states in 45Ti have been investigated with the interacting shell model including the full fp shell and the configuration dependent cranked Nilsson-Strutinsky approach. Generally, the shell model has successfully reproduced the energy levels of negative parity bands, especially has a good description of the signature inversion at 17/2-. The reduced electric quadrupole transition probabilities of high spin states are calculated by the two models and compared with the experimental results. Reasonable agreement between theories and experiment are obtained, while the shell model can give more fine structures. The large differences of elctromagnetic moments between the shell model calculation and observation call for more elaborate effective interaction and more active shells.
The negative parity high spin states in 45Ti have been investigated with the interacting shell model including the full fp shell and the configuration dependent cranked Nilsson-Strutinsky approach. Generally, the shell model has successfully reproduced the energy levels of negative parity bands, especially has good description of the signature inversion at 17 / 2-. The reduced electric quadrupole transition probabilities of high spin states are calculated by the two models and compared with the experimental results. Reasonable agreement between theories and experiment are obtained, while the shell model can give more fine structures. The large differences of elctromagnetic moments between the shell model calculation and observation call for more elaborate effective interactions and more active shells.