论文部分内容阅读
当前,微博已经成长为世界上最有影响力的社交网络服务之一。随着微博的流行,微博上大量的数据也使得用户无法快速获取他感兴趣的信息。推荐系统是通过研究用户已有数据来发掘用户兴趣,从而为用户推荐可能感兴趣的对象,如产品、网页、微博等。本文介绍了一种基于协同过滤推荐技术的微博推荐算法,从影响用户兴趣度的隐性因素,以及微博互联网中的数据采集和预处理等角度对微博推荐进行研究。使用矩阵分解对隐性因素建模,在已有用户与微博、用户与微博发布者影响因素的基础上,提出微博与微博发布者影响因素,提高了原算法的准确度。