基于深层卷积残差网络的航拍图建筑物精确分割方法

来源 :计算机科学 | 被引量 : 1次 | 上传用户:faycbl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对建筑物3D建模场景下所需的建筑物主体轮廓俯视平面图获取成本较高、航拍图建筑物的分割精度低、建筑物屋顶存在干扰物影响分割等问题,文中提出了一种将5个点的位置表示为热图作为网络额外输入通道的基于深层残差网络的航拍图建筑物精确分割方法,该方法在航拍图建筑物的精确分割任务中取得了比较好的分割效果。实验结果表明,该方法具有比传统半自动分割方法Grabcut更高的分割精度和分割效率;具有比DEXTR方法更好的鲁棒性和抗干扰性。该方法可以为建筑物3D重建任务提供高精度的建筑物俯视轮廓图和建筑物顶部图片,还可以
其他文献
逻辑回归是一个应用广泛的分类模型,但由于高维数据分类任务在实际应用中变得越来越频繁,使得分类模型面临着巨大的挑战。应对该挑战的一种有效方法是对模型进行正则化。许多已有的正则化逻辑回归直接运用L1范数罚作为正则化罚项,而不考虑特征之间的复杂关联关系。也有一些研究工作基于特征的组信息设计了正则化罚项,但它们假设组信息是预先给定的。文中从网络的视角对特征数据中存在的潜在模式进行挖掘,并基于此提出了一个基于网络结构的正则化逻辑回归。首先,以网络的形式描述特征数据并构建出特征网络;其次,从网络科学的角度对特征网络进
移动边缘计算是近年出现的一种新型网络计算模式,它允许将具有较强计算能力和存储性能的服务器节点放置在更加靠近移动设备的网络边缘(如基站附近),让移动设备可以近距离地卸载任务到边缘设备进行处理,从而解决了传统网络由于移动设备的计算和存储能力弱且能量较有限,从而不得不耗费大量时间、能量且不安全地将任务卸载到远方的云平台进行处理的弊端。但是,如何让仅掌握局部有限信息(如邻居数量)的设备根据任务的大小和数量选择卸载任务到本地,还是在无线信道随时间变化的动态网络中选择延迟、能耗均最优的移动边缘计算服务器进行全部或部分