论文部分内容阅读
The design problem of an integrated power and attitude control system (IPACS) for spacecrafts is investigated. A Lyapunov-typed IPACS controller is designed for a spacecraft equipped with 4 flywheels (3 orthogonal + 1 skew). This controller keeps in the nonlinear properties of original systems, so the control result can be more precise. A control law of the flywheels is also proposed to accomplish the attitude control and energy storage simultaneously. Aiming at the limitations existing in the power conversion characteristic and the wheel’s motor, a new strategy of energy management is proposed. The strategy can not only make the charged/discharged energy reaching balance in each orbital period, but also sufficiently utilize the power provided by the solar arrays. Therefore, the size and mass of solar arrays can be decreased, and the cost of spacecraft can be economized. A simulation example illustrates the validity of the designed IPACS.