【摘 要】
:
针对消息队列遥测传输(MQTT)协议缺乏保护物联网(Io T)设备间通信信息的内置安全机制,以及MQTT代理在新的零信任安全理念下的可信性受到质疑的问题,提出了一种基于代理重加密实现MQTT通信中发布者与订阅者间端到端数据安全传输的解决方案。首先,使用高级加密标准(AES)对传输数据进行对称加密,以确保数据在整个传输过程中的机密性;然后,采用将MQTT代理定义为半诚实参与方的代理重加密算法来加密传
【机 构】
:
战略支援部队信息工程大学密码工程学院,中国人民解放军77562部队
【基金项目】
:
信息保障技术重点实验室基金资助项目(614211203010417)。
论文部分内容阅读
针对消息队列遥测传输(MQTT)协议缺乏保护物联网(Io T)设备间通信信息的内置安全机制,以及MQTT代理在新的零信任安全理念下的可信性受到质疑的问题,提出了一种基于代理重加密实现MQTT通信中发布者与订阅者间端到端数据安全传输的解决方案。首先,使用高级加密标准(AES)对传输数据进行对称加密,以确保数据在整个传输过程中的机密性;然后,采用将MQTT代理定义为半诚实参与方的代理重加密算法来加密传输AES对称加密使用的会话密钥,从而消除对MQTT代理的隐式信任;其次,将重加密密钥生成的计算工作从客户
其他文献
浮点数位宽的深度神经网络需要大量的运算资源,这导致大型深度神经网络难以在低算力场景(如边缘计算)上部署。为解决这一问题,提出一种即插即用的神经网络量化方法,以压缩大型神经网络的运算成本,并保持模型性能指标不显著下降。首先,基于Octave卷积将输入特征图的高频和低频成分进行分离;其次,分别对高低频分量应用不同位宽的卷积核进行卷积运算;第三,使用不同位宽的激活函数将高低频卷积结果量化至相应位宽;最后
基于机器学习的入侵检测模型在网络环境的安全保护中起着至关重要的作用。针对现有的网络入侵检测模型不能够对网络入侵数据特征进行充分学习的问题,将深度学习理论应用于入侵检测,提出了一种具有自动特征提取功能的深度网络模型。在该模型中,使用膨胀卷积来增大对信息的感受野并从中提取高级特征,使用门控循环单元(GRU)模型提取保留特征之间的长期依赖关系,再利用深层神经网络(DNN)对数据特征进行充分学习。与经典的
针对矩阵满秩分解的外包算法没有对原始矩阵中零元素的个数进行保护且没有对云返回结果的正确性进行验证的问题,提出了一个可验证的矩阵满秩分解的安全外包方案。首先,在加密阶段,结合Sherman-Morrison公式构造出一个稠密的可逆矩阵来进行加密。其次,在云计算阶段,一方面,要求云计算加密矩阵的满秩分解;另一方面,在得到满秩分解的结果(一个列满秩矩阵和一个行满秩矩阵)后,要求分别云计算列满秩矩阵的左逆
图像描述是将图像所包含的全局信息用语句来表示。它要求图像描述生成模型既能提取出图像信息,又能将提取出来的图像信息用语句表达出来。传统的模型是基于卷积神经网络(CNN)和循环神经网络(RNN)搭建的,在一定程度上可以实现图像转语句的功能,但该模型在提取图像关键信息时精度不高且训练速度缓慢。针对这一问题,提出了一种基于CNN和长短期记忆(LSTM)网络改进的注意力机制图像描述生成模型。采用VGG19和
在基于事件的社会网络(EBSN)中,自动生成社交事件(Social Event)的事件描述(Event Description)供组织者参考,从而有效避免描述贫乏、描述过度、精准度低的问题,易于形成丰富、准确、高吸引力的事件描述。为了自动生成与真实事件描述足够相似的文本,提出了一种生成对抗网络(GAN)模型GAN_PG来生成事件描述。GAN_PG模型中的生成模型(Generator)采用变分自编码
个性化推荐平台具有数据来源广泛且数据类型丰富的特点,而其中的数据稀疏是影响推荐系统性能的重要原因。如何挖掘推荐平台结构化数据和非结构化数据以发现更多特征,在数据稀疏场景中提高推荐的准确率,缓解冷启动问题,并且使得推荐具有可解释性,是推荐系统面临的重大挑战。因此,针对为User推荐Item的个性化场景,利用异构信息网络(HIN)构建推荐平台中对象间的关联关系,以元路径(Meta-Graph)描述对象
针对深度学习中道路图像语义分割模型参数量巨大以及计算复杂,不适合于部署在移动端进行实时分割的问题,提出了一种使用深度可分离卷积构建的轻量级对称U型编码器-解码器式的图像语义分割网络MUNet。首先设计出U型编码器-解码器式网络;其次,在卷积块之间设计稀疏短连接;最后,引入了注意力机制与组归一化(GN)方法,从而在减少模型参数量以及计算量的同时提升分割精度。针对道路图像CamVid数据集,在1 00
当前专利是按照领域划分的,而基于功效特征可以实现跨领域的专利聚类,这在企业创新设计中具有重要意义,而精确提取专利功效特征和快速获得最优聚类结果是其中的关键任务。为此提出一种信息实体语义增强表示(ERNIE)和卷积神经网络(CNN)相结合的功效特征联合提取(FEI-Joint)模型来提取专利文献的功效特征,并且改进自组织神经网络(SOM)算法,从而提出具有早期拒绝策略与类合并思想的自组织神经网络(E
高水平论文是优秀科技人才的标志性成果之一。聚焦"Web Of Science(WOS)"热点研究学科,在构建学术论文语义Neo4j网络图和挖掘出活跃科研社区基础上,利用PageRank人才挖掘算法实现对科研社区中优秀科研人才的挖掘。首先,对现有的人才挖掘算法进行详细研究和分析;其次,结合WOS论文数据对PageRank人才挖掘算法进行了优化设计和实现,加入了论文发表的时间因子、作者署名排序递减模型
为了在牦牛养殖过程中对牦牛实现精确管理,需要对牦牛的身份进行识别,而牦牛脸识别是一种可行的牦牛身份识别方式。然而已有的基于神经网络的牦牛脸识别算法中存在牦牛脸数据集特征多、神经网络训练时间长的问题,因此,借鉴迁移学习的方法并结合视觉几何组网络(VGG)和卷积神经网络(CNN),提出了一种并行CNN(Parallel-CNN)算法用来识别牦牛的面部信息。首先,利用已有的VGG16网络对牦牛脸图像数据