论文部分内容阅读
目标检测是当今计算机视觉领域较为热门和流行的研究方向,在国防、安全和医疗保障等领域应用广泛。然而小目标的检测准确度一直不高,针对这一问题,提出了一种基于YOLO V3网络模型的改进方法,通过增强小目标的检测准确度来提高网络整体的检测成功率。由于小目标在图像中所占像素很少,经过多层卷积之后提取得到的特征不明显。改进方法通过将原网络模型中经2倍降采样的特征图进行卷积分别叠加到第二及第三个残差块的输入端,以此增强浅层特征信息。同时,在第一个8倍降采样的特征图后连接RFB模块,增强特征提取能力。用改进后的网