论文部分内容阅读
提出了一种基于深度学习的3D脑肿瘤核磁共振图像(MRI)自动分割方法。为了降低分割难度,采用三级级联网络的策略分割脑肿瘤的三个子区域;为了进一步提高三维分割的精度,采用帧间卷积和帧内卷积,加入额外的多层特征融合机制和空洞卷积;为了进一步细化分割结果,将条件随机场构建的循环神经网络整合到网络结构中。在模型训练中结合了两种损失函数,进一步提高了准确率。该方法在BraTS 2018数据集上进行验证,对于脑肿瘤整体、肿瘤核以及增强肿瘤,其分割结果的Dice系数分别达到了0.9093、0.8254和0.785