论文部分内容阅读
为实现对关节式目标的稳定跟踪,提出了基于增量学习的关节式目标跟踪算法.该算法应用图割法对目标矩形窗进行前景与背景分割,得到前景图像;然后对前景图像进行快速傅里叶变换,得到傅里叶系数矩阵,进而得到振幅图像,并将振幅图像作为跟踪目标的描述;最后将多个目标描述进行奇异值分解和主元分析,实现对跟踪目标的低维子空间描述.文中在粒子滤波框架下实现了整个跟踪算法.实验结果表明,该算法具有较稳定的关节式目标跟踪效果.