论文部分内容阅读
针对模糊时间序列预测理论多局限于短期时间范围预测以及对不确定数据集模糊变化趋势描述和论域区间划分研究不足的问题,构建了参数自适应的长期直觉模糊时间序列预测模型。新模型通过引入滑动窗口机制和参数自适应的直觉模糊C均值聚类算法优化论域区间划分,利用矢量预测技术解决时间序列长期范围预测误差积累的问题,有效地提高了复杂环境下时间序列长期趋势预测的精度,扩展了直觉模糊时间序列预测理论的应用范围。最后,通过典型实例验证了该方法的有效性和优越性。