论文部分内容阅读
讨论传统决策树算法中三种常用的基于熵的属性选择标准,提出一种基于属性重要性排序的建立决策树的新方法.该方法在决策树的每个内结点首先依据属性重要性将属性进行排序,然后选择最重要的属性作为分类属性生成决策树,并抽取出规则.与传统的决策树数据分类方法相比,此方法可有效地选择出对于分类最重要的分类属性,增强决策树的抗干扰能力,并提高规则的预测精度.