论文部分内容阅读
针对监督局部保持投影(Supervised locality preserving projection,SLPP)存在过学习和不能较好地保持图像空间的差异信息等问题,造成算法性能不够好,提出了一种新的基于流形学习的监督特征提取方法(Supervised local structureand diversity projection,S-LSDP).S-LSDP从信息统计量角度引入差异信息,并给出度量差异信息大小的准则(差异离散度)及明确的物理含义;然后通过最小化局部离散度和最大化差异离散度准则提取