论文部分内容阅读
面部表情是人类表达情感的主要方式.本文提出一种将手工特征和深度学习特征相结合,以跨连通道加权模块为基础的面部表情识别方法.将灰度图、局部二值模式特征、Sobel特征作为三通道特征输入,以深度可分离卷积代替标准卷积;同时引入跨连通道加权模块,通过建模不同通道特征之间的关系,更加高效地进行不同层次特征的融合.本文方法在CK+和JAFFE两个常用表情数据集上进行了验证,取得了高达99.77%和99.48%的准确率,证明了本文方法的有效性与可行性.