基于AAM-SIFT特征描述的两级SVM人脸表情识别

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:zhuxiangyuzhucendsc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用AAM定位特征点、尺度不变特征变换(SIFT)描述特征的方式提出一种基于AAM-SIFT的表情特征提取方法。该方法用特征点周围区域梯度方向直方图描述表情特征;同时根据不同子区域对表情的贡献不同,将特征点分组并赋予不同权重,并用两级支持向量机(SVM)对融合的加权特征进行分类识别。在标准表情库和多姿态表情库上的验证结果表明,该方法能有效提高正面人脸表情的识别率,对一定偏转角度的非正面人脸表情也保持较好的鲁棒性。
其他文献
对我院2005年2月-2008年1月4879例产妇中发生晚期产后出血的13例进行临床总结分析,探讨引发晚期产后出血的相关原因与护理对策。结果表明,76.9%的晚期产后出血发生在产后2周以内,
轮廓角点检测与特征构造是基于轮廓角点的RSI多目标识别算法的关键。针对现有的轮廓角点检测方法在准确性与抗噪能力的不足,提出一种改进的轮廓角点检测算法,构造一种基于目标主轴与轮廓角点的特征串,利用动态规划算法计算特征串间的相似度进行目标识别。算法中把目标主轴的旋转角度作为目标的姿态角。实验证明该算法能够快速地识别出目标的旋转角度,对目标进行分类,且具有平移不变性、旋转不变性、尺度不变性以及较好的抗噪