论文部分内容阅读
学生的数学学习内容应当是现实的、有趣的、富有挑战性的,这些内容要有利于学生主动地从事观察、实验、猜测、验证、推理与交流等数学活动。有效的数学学习活动不能单纯地依赖模仿与记忆,学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,就是个体主动亲历或虚拟地亲历某件事并获得相应的认知和情感的直接经验的活动。让学生亲历数学活动,不但有助于通过多种活动探究获取数学知识,更重要的是学生在体验中能够逐步掌握数学学习的一般规律和方法。教师要以“课标”精神为指导,用活用好教材,进行创造性地教,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,从而达到学会学习的目的。而创新是素质教育的核心,创新是一种精神。诺贝尔物理奖得主美籍华人朱棣文曾一针见血指出:“中国学生学习很刻苦,书面成绩很好,但动手能力差,创新精神明显不足,这是与美国学生的主要差距。”我认为这一评价非常中肯、切中时弊。那么我们的学生创新精神和创造能力是怎样失去的呢?根本原因在教育本身,负担太重——考试频繁、资料繁多、死记硬背、作业机械重复,磨灭了学生学习的兴趣和对数学现象的好奇心,题海战术泯灭了学生的创造性思维,学生参加数学活动几乎是一种被动的行为。传统的数学教学是学生被动吸收、机械记忆、反复练习、强化储存的过程,没有主体的体验。沐浴着新课程的阳光,我们“豁然开朗”:教师不是“救世主”,教师只不过是学生自我发展的引导者和促进者。而学生学习数学是以积极的心态调动原有的认知和经验,尝试解决新问题、理解新知识的有意义的过程。
第一、注重开放题的教学,提高创新能力
沿袭已久的教育内容和方法不利于培养学生的创新品质。数学作为一门思维性极强的基础学科,在培养学生的创新思维方面有其得天独厚的条件,而开放题的教学,又可充分激发学生的创造潜能,尤其对学生思维变通性、创造性的训练提出了新的更多的可能性,所以,在开放题的教学中,选用的问题既要有一定的难度,又要为大多数学生所接受,既要隐含“创新”因素,又要留有让学生可以从不同角度、不同层次充分施展他们聪明才智的余地,如:调查本校学生的课外活动的情况,面对这个比较复杂的课题,一定要给学生以足够的时间和空间进行充分的探索和交流。首先学生要讨论的问题是用什么数据来刻画课外活动的情况,是采用调查和收集数据。接着的问题是“可以调查那些呢?”对此,学生可能有很多想法,对学生提供的办法不要急于肯定或否定,应让学生通过实际操作和充分讨论,认识到不同的样本得到的结果可能不一样,进而组织学生深入讨论:从这些解释中能作出什么判断?能想办法证实或反驳有这些数据得来的结论吗?这是一个开放题,其目的在于通过学习提高学生发现问题、吸收信息和提出新问题的能力,注重学生主动获取知识、重组应用,从综合的角度培养学生创新思维。
第二、在实践中学数学
教与学都要以“做”为中心。陶行知先生早就提出“教学做合一”的观点,在美国也流行“木匠教学法”,让学生找找、量量、拼拼……因为“你做了你才能学会”。皮亚杰指出:“传统教学的特点,就在于往往是口头讲解,而不是从实际操作开始数学教学。”“做”就是让学生动手操作,在操作中体验数学。通过实践活动,可以使学生获得大量的感性知识,同时有助于提高学生的学习兴趣,激发求知欲。
在学习“时分秒的认识”之前,让学生先自制一个钟面模型供上课用,远比带上现成的钟好,因为学生在制作钟面的过程中,通过自己思考或询问家长,已经认真地自学了一次,课堂效果能不好吗?如:一张长30厘米,宽20厘米的长方形纸,在它的四个角上各剪去一个边长5厘米的小正方形后,围成的长方体的体积、表面积各是多少?学生直接解答有困难,若让学生亲自动手做一做,在实践操作的过程中体验长方形纸是怎样围成长方体纸盒的,相信大部分学生都能轻松解决问题,而且掌握牢固。
再如“将正方体钢胚锻造成长方体”,为了让学生理解变与不变的关系,让他们每人捏一个正方体橡皮泥,再捏成长方体,体会其体积保持不变的道理。在学习圆柱与圆锥后,学生即使理解了其关系,但遇到圆柱、圆锥体积相等,圆柱高5厘米,圆锥高几厘米之类的习题时仍有难度,如果让学生用橡皮泥玩一玩,或许学生就不会再混淆,而能清晰地把握,学会逻辑地思考。对于动作思维占优势的小学生来说,听过了,可能就忘记;看过了,可能会明白;只有做过了,才会真正理解。教师要善于用实践的眼光处理教材,力求把教学内容设计成物质化活动,让学生体验“做数学”的快乐。
第三、尊重学生个体差异,实施分层教学,开展积极评价
美国心理学家华莱士指出,学生显著的个体差异、教师指导质量的个体差异,在教学中必将导致学生创造能力、创造性人格的显著差异。因此,教师调控教学内容时必须在知识的深度和广度上分层次教学,尽可能地采用多样化的教学方法和学习指导策略。在教学评价上要承认学生的个体差异,对不同程度、不同性格的学生提出不同的学习要求。
由于智力发展水平及个性特征的不同,认识主体对于同一事物理解的角度和深度必然存在明显差异,由此所建构的认知结构必然是多元化的、个性化的和不尽完善的。学生的个体差异表现为认识方式与思维策略的不同,以及认知水平和学习能力的差异。作为一名教师要及时了解并尊重学生的个体差异,积极评价学生的创新思维,从而建立一种平等、信任、理解和相互尊重的和谐师生关系,营造民主的课堂教学环境,学生才会在此环境中大胆发表自己的见解,展示自己的个性特征,对于有困难的学生,教师要给予及时的关照与帮助,要鼓励他们主动参与数学活动,尝试用自己的方式去解决问题,发表自己的看法 教师要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。
第四、作业数量个性化,迭现层次性
《数学课程标准》提出数学教育要面向全体学生,实现“不同的人在数学上得到不同的发展”的理念。多元智能理论指出:每个人都是用各自独特的组合方式把各种智力组合在一起并以不同的智力来学习的。教育必须尊重学生的个体差异,因而教育的内容、形式、要求必须有多样性。为了让学生能自主地、富有个性地参与学习,家庭作业的设计增加了选择性、层次感,把作业的主动权真正还给学生。家庭作业针对不同层次的学生设计出难易程度及数量各不相同的题目,一般可分为必做题(A类学生完成)、选做题(B类学生完成)、挑战题(C类学生完成)。例如:教学“长方形的周长”后,设计出3道必做题(已知长和宽,求周长的基本题);2道选做题:⑴学校操场是一个长方形,长100米,比宽长40米。操场的周长是多少米?⑵量出家里的书桌或者饭桌的长和宽,并求出它的周长;1道挑战题:用一根长20厘米的线,你能围出几个不同大小的长方形?就是同一层次的题目,例如上述2道选做题,也可以让学生自己选择是独立完成,还是合作完成(同学之间或者和爸爸妈妈讨论、交流、合作)、或者咨询完成(向家长、老师请教)等。
第五、突破定势,让学生“发散思维”
在对数学的认识上,由于学生获得的信息较多,在许多方面将大大超出数学教材的认识范围,如果教师不能准确把握学生的这一个特点,就将妨碍学生在更大的范围内发展和进步。随着时代的发展,学生所接触的各种媒介越来越多,教师如果总是以旧的眼光来面对学生,很容易出现思维定势的错误,所组织的教学将难以适应学生的发展需要。
(作者单位:542706广西富川县福利中心校)
第一、注重开放题的教学,提高创新能力
沿袭已久的教育内容和方法不利于培养学生的创新品质。数学作为一门思维性极强的基础学科,在培养学生的创新思维方面有其得天独厚的条件,而开放题的教学,又可充分激发学生的创造潜能,尤其对学生思维变通性、创造性的训练提出了新的更多的可能性,所以,在开放题的教学中,选用的问题既要有一定的难度,又要为大多数学生所接受,既要隐含“创新”因素,又要留有让学生可以从不同角度、不同层次充分施展他们聪明才智的余地,如:调查本校学生的课外活动的情况,面对这个比较复杂的课题,一定要给学生以足够的时间和空间进行充分的探索和交流。首先学生要讨论的问题是用什么数据来刻画课外活动的情况,是采用调查和收集数据。接着的问题是“可以调查那些呢?”对此,学生可能有很多想法,对学生提供的办法不要急于肯定或否定,应让学生通过实际操作和充分讨论,认识到不同的样本得到的结果可能不一样,进而组织学生深入讨论:从这些解释中能作出什么判断?能想办法证实或反驳有这些数据得来的结论吗?这是一个开放题,其目的在于通过学习提高学生发现问题、吸收信息和提出新问题的能力,注重学生主动获取知识、重组应用,从综合的角度培养学生创新思维。
第二、在实践中学数学
教与学都要以“做”为中心。陶行知先生早就提出“教学做合一”的观点,在美国也流行“木匠教学法”,让学生找找、量量、拼拼……因为“你做了你才能学会”。皮亚杰指出:“传统教学的特点,就在于往往是口头讲解,而不是从实际操作开始数学教学。”“做”就是让学生动手操作,在操作中体验数学。通过实践活动,可以使学生获得大量的感性知识,同时有助于提高学生的学习兴趣,激发求知欲。
在学习“时分秒的认识”之前,让学生先自制一个钟面模型供上课用,远比带上现成的钟好,因为学生在制作钟面的过程中,通过自己思考或询问家长,已经认真地自学了一次,课堂效果能不好吗?如:一张长30厘米,宽20厘米的长方形纸,在它的四个角上各剪去一个边长5厘米的小正方形后,围成的长方体的体积、表面积各是多少?学生直接解答有困难,若让学生亲自动手做一做,在实践操作的过程中体验长方形纸是怎样围成长方体纸盒的,相信大部分学生都能轻松解决问题,而且掌握牢固。
再如“将正方体钢胚锻造成长方体”,为了让学生理解变与不变的关系,让他们每人捏一个正方体橡皮泥,再捏成长方体,体会其体积保持不变的道理。在学习圆柱与圆锥后,学生即使理解了其关系,但遇到圆柱、圆锥体积相等,圆柱高5厘米,圆锥高几厘米之类的习题时仍有难度,如果让学生用橡皮泥玩一玩,或许学生就不会再混淆,而能清晰地把握,学会逻辑地思考。对于动作思维占优势的小学生来说,听过了,可能就忘记;看过了,可能会明白;只有做过了,才会真正理解。教师要善于用实践的眼光处理教材,力求把教学内容设计成物质化活动,让学生体验“做数学”的快乐。
第三、尊重学生个体差异,实施分层教学,开展积极评价
美国心理学家华莱士指出,学生显著的个体差异、教师指导质量的个体差异,在教学中必将导致学生创造能力、创造性人格的显著差异。因此,教师调控教学内容时必须在知识的深度和广度上分层次教学,尽可能地采用多样化的教学方法和学习指导策略。在教学评价上要承认学生的个体差异,对不同程度、不同性格的学生提出不同的学习要求。
由于智力发展水平及个性特征的不同,认识主体对于同一事物理解的角度和深度必然存在明显差异,由此所建构的认知结构必然是多元化的、个性化的和不尽完善的。学生的个体差异表现为认识方式与思维策略的不同,以及认知水平和学习能力的差异。作为一名教师要及时了解并尊重学生的个体差异,积极评价学生的创新思维,从而建立一种平等、信任、理解和相互尊重的和谐师生关系,营造民主的课堂教学环境,学生才会在此环境中大胆发表自己的见解,展示自己的个性特征,对于有困难的学生,教师要给予及时的关照与帮助,要鼓励他们主动参与数学活动,尝试用自己的方式去解决问题,发表自己的看法 教师要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。
第四、作业数量个性化,迭现层次性
《数学课程标准》提出数学教育要面向全体学生,实现“不同的人在数学上得到不同的发展”的理念。多元智能理论指出:每个人都是用各自独特的组合方式把各种智力组合在一起并以不同的智力来学习的。教育必须尊重学生的个体差异,因而教育的内容、形式、要求必须有多样性。为了让学生能自主地、富有个性地参与学习,家庭作业的设计增加了选择性、层次感,把作业的主动权真正还给学生。家庭作业针对不同层次的学生设计出难易程度及数量各不相同的题目,一般可分为必做题(A类学生完成)、选做题(B类学生完成)、挑战题(C类学生完成)。例如:教学“长方形的周长”后,设计出3道必做题(已知长和宽,求周长的基本题);2道选做题:⑴学校操场是一个长方形,长100米,比宽长40米。操场的周长是多少米?⑵量出家里的书桌或者饭桌的长和宽,并求出它的周长;1道挑战题:用一根长20厘米的线,你能围出几个不同大小的长方形?就是同一层次的题目,例如上述2道选做题,也可以让学生自己选择是独立完成,还是合作完成(同学之间或者和爸爸妈妈讨论、交流、合作)、或者咨询完成(向家长、老师请教)等。
第五、突破定势,让学生“发散思维”
在对数学的认识上,由于学生获得的信息较多,在许多方面将大大超出数学教材的认识范围,如果教师不能准确把握学生的这一个特点,就将妨碍学生在更大的范围内发展和进步。随着时代的发展,学生所接触的各种媒介越来越多,教师如果总是以旧的眼光来面对学生,很容易出现思维定势的错误,所组织的教学将难以适应学生的发展需要。
(作者单位:542706广西富川县福利中心校)