论文部分内容阅读
文本自动分类技术是自然语言处理的一个重要的应用领域,是替代传统的繁杂人工分类方法的有效手段和必然趋势.本文简要介绍了文本分类的特征提取算法,并通过实验比较了各种提取算法在KNN中的性能.实验表明IG、MI、CE、χ2、WE五种特征提取方法在KNN分类器中性能接近,互信息(MI)特征提取方法随着特征数的提高分类性能提高地较快,当特征数目较小的时候分类性能极差.