平面图的循环色数与临界性

来源 :数学进展 | 被引量 : 0次 | 上传用户:darkak
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
循环着色是普通着色的推广.本文中,我们研究了一类平面图的循环着色问题,并证明了这类平面图是循环色临界的,但不是普通色临界的.同时,我们还研究了循环着色与图Gκ^d中的链之间的关系.
其他文献
一个地图的每条边如果不是环就是割边(即该边的两边是同一个面的边界),则称之为双奇异地图.本文研究Klein瓶上带根双奇异地图的计数问题,得到了此类地图以边数、平面环数、手
本文证明了Itr(→T,Z2)=(ItrT).{x}当且仅当ItrT由T中所有单项式生成,这里T是εu,λ中的理想且→T=T·{x}在→εx,λ(Z2)中具有有限Z2余维数.此结果表明,Golubitsky的书
目的观察细胞因子诱导杀伤(CIK)细胞静脉回输联合化疗治疗晚期食管癌的疗效。方法将66例晚期食管癌患者随机分为观察组及对照组各33例,观察组采用CIK细胞静脉回输联合化疗治疗,