论文部分内容阅读
特征选择是文本分类的一个核心研究课题。分析了几种经典特征选择方法并总结了它们的不足,提出了一个新型文档频,引入粗糙集理论,并给出了一个基于二进制可辨矩阵的属性约简算法,最后把该属性约简算法同新型文档频结合起来,提供了一个综合的特征选择方法。该方法首先利用新型文档频进行特征初选以过滤掉一些词条,然后利用所提属性约简算法消除冗余。通过对人民网的8类新闻组,每类300篇文档的分类实验,结果表明此种特征选择方法在分类准确率和召回率上优于互信息、CHI和信息增益方法。