论文部分内容阅读
针对网格计算环境下,参与计算用户和计算资源规模日益庞大,用户申请资源过程中所需的资源匹配过程逐步复杂化和大规模化,提出了一种基于推荐机制的网格资源匹配算法.以往的网格计算资源的匹配和调度算法需要在调度计算时遍历所有网格资源,而改进的基于SVD(奇异值分解)的协同过滤算法考虑了用户行为相关性和资源使用频度的相关性,通过用户对资源项的使用历史记录建立用户对资源的满意度评分体系,利用推荐机制给出用户推荐资源集以到达资源匹配的效果.从一个新的角度给出了解决大量资源匹配的方法.