论文部分内容阅读
齿轮箱轴承是高速列车传动系统中的重要零件之一,其故障检测对保障列车的正常运行具有重要意义。针对强背景噪声环境下高速列车齿轮箱轴承早期故障信号微弱难以检测的问题以及最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)方法受滤波器阶数、冲击信号周期和移位数影响的问题,提出了基于天牛群优化算法(Beetle Swarm Optimization Algorithm,BSO)改进的自适应MCKD的轴承早期故障诊断方法。该方法首先采用天牛群优化算法自适应