论文部分内容阅读
目的基于深度学习的多聚焦图像融合方法主要是利用卷积神经网络(convolutional neural network,CNN)将像素分类为聚焦与散焦。监督学习过程常使用人造数据集,标签数据的精确度直接影响了分类精确度,从而影响后续手工设计融合规则的准确度与全聚焦图像的融合效果。为了使融合网络可以自适应地调整融合规则,提出了一种基于自学习融合规则的多聚焦图像融合算法。方法采用自编码网络架构,提取特征,同时学习融合规则和重构规则,以实现无监督的端到端融合网络;将多聚焦图像的初始决策图作为先验输入,学习图