论文部分内容阅读
人工智能促进了风控行业的发展,智能风控的核心在于风险控制,信贷违约预测模型是解决这一问题必须倚靠的手段.传统的解决方案是基于人工和广义线性模型建立的,然而现在通过网络完成的交易数据,具有高维性和多重来源等特点,远远超出了现有模型的处理能力,对于传统风控提出了巨大的挑战.因此,本文提出一种基于融合方法的可解释信贷违约预测模型,首先选取LightGBM、DeepFM和CatBoost作为基模型,CatBoost作为次模型,通过模型融合提升预测结果的准确性,然后引入基于局部的、与模型无关的可解释性方法LIME,解释融合模型的预测结果.基于真实数据集的实验结果显示,该模型在信贷违约预测任务上具有较好的精确性和可解释性.