基于可解释集成学习的信贷违约预测

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:hellolin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
人工智能促进了风控行业的发展,智能风控的核心在于风险控制,信贷违约预测模型是解决这一问题必须倚靠的手段.传统的解决方案是基于人工和广义线性模型建立的,然而现在通过网络完成的交易数据,具有高维性和多重来源等特点,远远超出了现有模型的处理能力,对于传统风控提出了巨大的挑战.因此,本文提出一种基于融合方法的可解释信贷违约预测模型,首先选取LightGBM、DeepFM和CatBoost作为基模型,CatBoost作为次模型,通过模型融合提升预测结果的准确性,然后引入基于局部的、与模型无关的可解释性方法LIME,解释融合模型的预测结果.基于真实数据集的实验结果显示,该模型在信贷违约预测任务上具有较好的精确性和可解释性.
其他文献
在大规模网络环境下,主机面临的安全威胁也愈发多样.随着基于机器学习检测恶意文件的技术快速崛起,极大的提升了对恶意软件的检测能力,也迫使对手改变了攻击策略.其中“Living off the land”策略通过调用操作系统工具或者执行任务的自动化管理程序来实现恶意行为.威胁检测可以从父子进程的上下文中发现可疑行为,将父子进程链及其派生的相关事件看作无向图,应用监督学习XGBoost算法进行权重分配,生成无向加权图.最后使用社区发现算法从图中识别出更大的攻击序列,在MIRTE ATT&CK仿真攻击数据集上进行
API相关的知识通常分散隐含在多个信息源,如API参考文档、问答网站等非结构化的文本中,不利于API的查询与检索.为此,提出一种多源信息融合的API知识图谱构建方法,以提高API检索的效率.API参考文档从设计者角度描述了API的功能和结构,Stack Overflow问答网站从用户角度提供了API的使用目的及应用场景,二者互为补充,可共同为API查询与检索提供支持.通过分析API参考文档,抽取API和领域概念作为实体,构建API和领域概念之间的关联关系;利用Stack Overflow问答网站,抽取问答
为克服传统BP神经网络(BP Neural Network,BPNN)在销售预测中,预测精度低、收敛速度慢的缺点.提出了一种基于改进免疫遗传算法(Improved Immune Genetic Algorithm,IIGA)优化BP神经网络的销售预测模型.改进的免疫遗传算法提出了新的种群初始化方式、抗体浓度的调节机制及自适应交叉算子、变异算子的设计方法,有效的提高了IIGA的收敛能力和寻优能力.并用IIGA优化BPNN的初始权值和阈值,改善网络参数的随机性导致BPNN输出不稳定和易陷入局部极值的缺点.以某