论文部分内容阅读
云平台上海量数据中用户信息的提取,可更好地提升云提取的服务质量。对信息的准确提取,需要给出数据特征淘汰特性和过滤内在联系性,对数据特征进行匹配来完成。传统方法通过统计样本数据的频率表,提取每个数据特征的不一致性,但无法互相匹配,导致提取精度低。提出基于改进K近邻的云平台上海量数据中提取用户信息数学模型。以原始的云数据输人空间的特征为提取因子,对各个条件数据属性依据相同的权重提取特征样本间的距离,得到不同条件属性下相应特征参数的联合熵,给出数据特征淘汰特性和过滤的内在联系性,采用分数阶Fourier变