论文部分内容阅读
为了处理诸如高斯、伽马、极值、瑞利、均匀或贝塔等基本灰度分布情形下的阈值选取难题,本文提出了一种跨域香农熵最大化导向的自动阈值选取方法.该方法利用不变的引导边缘图像和变化的约束轮廓图像共同构造出一系列持续变化的一维灰度直方图,并采用香农熵作为熵计算模型,从而得以跨越图像中若干局部区域去计算跨域香农熵,并以最大跨域香农熵对应的阈值作为最终阈值.在40幅合成图像和50幅真实世界图像上的实验结果表明,该方法虽然在计算效率方面不优于Masi熵阈值方法、Tsallis熵阈值方法、局部香农熵阈值方法和迭代三类阈