论文部分内容阅读
针对传统滚动轴承故障诊断算法过度依赖专家经验和故障特征提取困难的问题,提出一种基于同步挤压S变换(SSST)和集成深层脊波自编码器(EDRAE)方法。该方法对轴承振动信号进行SSST变换得到时频图像,并将时频图像进行双向二维主成分分析压缩;利用不同的脊波函数设计不同的脊波自编码器(RAE),并构造相应的深层脊波自编码器(DRAE)且引入"跨层"连接以缓解DRAE的梯度消失现象;将压缩时频图像输入各DRAE网络进行无监督预训练和有监督微调,并通过加权平均法输出识别结果。试验结果表明,基于SSST和ED