论文部分内容阅读
在目前的基于粒子滤波检测前跟踪(PF-TBD)算法中,对粒子的预测通常是根据单一直线运动模型实现的,在目标机动时由于与运动形式相差较大,影响了跟踪效果。为此,提出一种基于模型选择的粒子滤波检测前跟踪(MM-PF—TBD)算法。该算法由已估计出的目标位置,计算相对偏转角,并以此判定目标当前的运动模式,进而选择相应的运动模型对下一时刻的粒子进行预测,显著提高了对粒子预测的精度。理论分析和仿真实验表明,文中所提算法适用于目标不同的运动形式,有效提高了目标机动时的检测和跟踪性能。