论文部分内容阅读
依据最佳一致逼近的基本理论,围绕切比雪夫多项式的特征方程,参照余弦函数的变化图形,建立了余弦函数型最佳一致逼近C_n(x)多项式.文中介绍了C_n(x)多项式在被逼近函数y(x)=0条件下依据的微分方程、相关定义、有关性质、数学表式、递推公式;讨论了它与切比雪夫T_n(x)多项式之间的关系及转化;提供了在y(x)≠0条件下C_n(x)多项式转化成c(x)所具有的特征和特点;给出了关于c(x)多项式得以实现的具体算法.应用实例表明,在减少多项式的摆动性、提高逼近精度、增大预测范围方面都有较大的改善和提高.