【摘 要】
:
锂是熔盐堆燃料载体盐的主要材料之一,其中子核反应截面数据是熔盐堆芯中子物理设计及堆芯长期安全运行中的重要基础数据.本工作基于中国散裂中子源反角白光中子束线(CSNS Back-n)飞行时间谱仪,利用中子全截面测量谱仪(NTOX),采用透射法测量了天然锂中子全截面.实验中,中子飞行距离约为76.0 m,采用15.0mm和8.00mm两种厚度的天然锂金属样品,在0.4eV—20Me V中子能量范围内测得了统计计数较好的中子全截面.特别是在keV及以下能区增补了实验数据,为锂的核数据评价工作提供了更加丰富和可靠
【机 构】
:
中国科学院上海应用物理研究所,上海 201800;中国科学院先进核能创新研究院,上海 201800;中国科学院大学,北京 100049;中国科学院高能物理研究所,北京 100049;散裂中子源科学中心
论文部分内容阅读
锂是熔盐堆燃料载体盐的主要材料之一,其中子核反应截面数据是熔盐堆芯中子物理设计及堆芯长期安全运行中的重要基础数据.本工作基于中国散裂中子源反角白光中子束线(CSNS Back-n)飞行时间谱仪,利用中子全截面测量谱仪(NTOX),采用透射法测量了天然锂中子全截面.实验中,中子飞行距离约为76.0 m,采用15.0mm和8.00mm两种厚度的天然锂金属样品,在0.4eV—20Me V中子能量范围内测得了统计计数较好的中子全截面.特别是在keV及以下能区增补了实验数据,为锂的核数据评价工作提供了更加丰富和可靠的实验数据.在此基础上,采用1/v律和R矩阵理论对MeV以下能区的新测量数据进行了理论分析,获得了7Li和6Li在260keV能量附近的中子共振参数.
其他文献
非线性调频(NLFM)信号在雷达、通信、信号处理中应用广泛,该类信号所激励下的非线性系统响应有着丰富的信息,通过共振来增强NLFM信号具有一定实际意义与价值.本文主要研究了受到不同类型NLFM信号所激励的非线性系统共振现象,提出了实时尺度变换方法来处理高频NLFM信号,克服人为选择造成信号输出响应较差的缺点.同时,提出实时谱放大因子作为共振评价指标,准确评价NLFM信号激励下的系统共振响应,讨论系统参数对系统最优共振响应的影响,参数选择在合理的区间内即可实现最优共振响应,不仅实现信号特征的大幅增强,还保持
近年来超导量子计算的研究方兴未艾,随着谷歌宣布首次实现“量子优势”,这一领域的研究受到了人们进一步的广泛关注.超导量子比特是具有量子化能级、量子态叠加和量子态纠缠等典型量子特性的宏观器件,通过电磁脉冲信号控制磁通量、电荷或具有非线性电感和无能量耗散的约瑟夫森结上的位相差,可对量子态进行精确调控,从而实现量子计算和量子信息处理.超导量子比特有着诸多方面的优势,很有希望成为普适量子计算的核心组成部分.以铌或其他硬金属(如钽等)为首层大面积材料制备的超导量子比特及辅助器件(简称铌基器件)拥有其独特的优点以及进一
孤立阿秒脉冲因可以跟踪和控制原子及分子内电子的运动过程而备受关注.本文从理论上开展了氦原子在3束飞秒脉冲激光组合场辐照下产生的高次谐波和阿秒脉冲辐射的研究.组合激光场由16 fs/1600 nm,15 fs/1100 nm和5.3 fs/800 nm的钛宝石脉冲构成.与前两束脉冲合成的双色场产生谐波谱相比,附加钛宝石脉冲的三色场产生的高次谐波发射谱呈现出高转换效率及宽带超连续特性,超连续谱范围覆盖从230—690次谐波,傅里叶变换后实现了128 as高强度孤立短脉冲的产生.该结果归因于合成的三色场呈现出高
近年来,直接液体冷却薄片激光器因其体积功率比小,热管理能力强等优势而成为研究热点.本文建立了一套直接液体冷却薄片激光器波前畸变的分析方法.应用该方法研究了直接液体冷却薄片激光器中抽运光均匀性对光束波前畸变的影响.计算分析了均匀性为92%,80%和70%,且总的抽运功率不变时,激光器高阶像差分布情况.随着均匀性逐渐减弱,激光器中高阶像差逐渐增强,低阶像差量基本保持不变.实验中,设计加入波导和未加入波导结构,构建了均匀性为92%和70%的抽运光分布,分别测量了两种情况下的波前抖动情况以及波前畸变分布,抽运功率
可视图(visibility graph,VG)算法已被证明是将时间序列转换为复杂网络的简单且高效的方法,其构成的复杂网络在拓扑结构中继承了原始时间序列的动力学特性.目前,单维时间序列的可视图分析已趋于成熟,但应用于复杂系统时,单变量往往无法描述系统的全局特征.本文提出一种新的多元时间序列分析方法,将心梗和健康人的12导联心电图(electrocardiograph,ECG)信号转换为多路可视图,以每个导联为一个节点,两个导联构成可视图的层间互信息为连边权重,将其映射到复杂网络.由于不同人群的全连通网络表
设计了一种氧化石墨烯(GO)功能化的倾斜光纤光栅(TFBG)传感器,用于检测水溶液中的重金属离子.通过氧等离子体活化光纤表面,以及采用GO的无水乙醇分散液,避免了咖啡环效应引起的GO的团聚和堆叠,充分了暴露GO的表面和羧基.吸附重金属离子后,GO-TFBG传感器的透射光谱中的谐振峰发生红移,这是由GO向重金属离子的电子转移导致的有效折射率变化造成的.对Pb2+和Cd2+离子最低检测限可达到10–10 mol/L(ng/L量级),相应灵敏度分别为0.426 dB/(nmol·L–1)和0.385 dB/(n
局部有源忆阻器(locally-active memristor,LAM)凭借其高集成度、低功耗和局部有源特性等优点,在神经形态计算领域显示出巨大的潜力.本文提出了一种简单的N型LAM数学模型,通过揭示其非线性动力特性,设计了N型LAM神经元电路.采用Hopf分岔、数值分析等方法定量研究了该电路的动力学行为,成功模拟了多种神经形态行为,包括全或无行为、尖峰、簇发、周期振荡等.并利用该神经元电路结构模拟了生物触觉神经元的频率特性.仿真结果表明:当输入信号幅值低于阈值时,神经元电路输出信号的振荡频率与输入信号
突触输入刺激神经元产生的电活动,在神经编码中发挥着重要作用.通常认为,兴奋性输入增强电活动,抑制性输入压制电活动.本文选取可调节电流衰减速度的突触模型,研究了兴奋性自突触在亚临界Hopf分岔附近压制神经元电活动的反常作用,与抑制性自突触的压制作用进行了比较,并采用相位响应曲线和相平面分析解释了压制作用的机制.对于单稳的峰放电,快速和中速衰减的兴奋性自突触分别可以诱发频率降低的峰放电和混合振荡(峰放电与阈下振荡的交替),而中速和慢速衰减的抑制性自突触也可以分别诱发频率降低的峰放电和混合振荡.对于与静息共存的
超声/光声双模态成像技术因其同时兼具超声的高分辨率结构成像和光声的高对比度功能成像优势,极大地推动了光声成像技术的临床应用推广.传统超声/光声双模态成像技术多基于超声成像所用阵列探头同时收集光声信号,系统结构紧凑且无需图像配准,操作便捷.但该类设备使用阵列探头和多通道数据采集,使得其成本较高;且成像结果易受通道一致性差异影响.本文提出了一种基于声学扫描振镜的超声/光声双模态成像技术,该技术采用单个超声换能器结合一维声学扫描振镜进行快速声束扫描,实现超声/光声双模态成像,是一种小型化、低成本的双模态快速成像
Hong-Ou-Mandel(HOM)干涉是光子的一种非经典效应,在量子光学中起到重要作用.偏硼酸钡(b-barium borate,BBO)具有较高的非线性效率,常被用来产生双光子态,进而展示HOM干涉.然而,在以前的实验中,人们往往使用带通滤光片对双光子的频谱进行过滤,所得光谱由带通滤光片直接决定,而对BBO晶体自身的原始光谱,特别是泵浦光强聚焦下的原始光谱,缺乏系统性研究.本文对泵浦光强聚焦条件下BBO晶体产生的双光子纠缠态光谱分布和HOM干涉进行了深入研究.理论计算发现,使用50 mm透镜聚焦的情