论文部分内容阅读
研究双线性元对一类非线性sine-Gordon方程的有限元逼近.利用该元的高精度结果和对时间t的导数转移技巧,得到了H1模意义下的超逼近性.进一步地,通过运用插值后处理技术,给出了H1模意义下的超收敛结果.与此同时,通过构造一个新的外推格式,导出了与线性问题情形相同的三阶外推解.最后给出了一种全离散逼近格式下的最优误差估计.