论文部分内容阅读
运用基于支持向量机理来建立一个新的个人信用评估预测模型,以期取得更好的预测分类能力.并对SVM分类结果与三层全连接BPN分类结果进行了比较.结果表明,在判别潜在的贷款申请者中支持向量的判别结果比神经网络的要好.为了减小训练集偏差及为了验证两种方法的鲁棒性,基于两种策略(平衡样本与非平衡样本)交叉验证来进一步评价SVM分类准确性,并对两种方法基于两种策略的误分类作了风险代价分析.