论文部分内容阅读
卡尔曼滤波通过建立状态方程和观测方程来描述系统的动态过程,依据滤波增益矩阵的变化,从测量数据中定量提取有效信息,修正状态参量,利用已有的信息对动态噪声方差阵进行实时估计,从而补偿噪声对数据的影响,有效地提高数据精度。通过用Kalman滤波对郑州某地高层建筑变形监测数据的处理与预测分析,并同多项式拟合方法比较,表明Kalman滤波在处理变形监测数据时具有实时快速、精度高的特点。