【摘 要】
:
The microstructural evolution of purity Pd under 30 keV He+ irradiation at 573 K was investigated by in-situ transmission electron microscopy.The nucleation,growth,merging,annihilation,size change,number density variation,and types of dislocation loops we
【机 构】
:
College of Energy,Xiamen University,Xiamen,361102,China;Fujian Research Center for Nuclear Engineeri
论文部分内容阅读
The microstructural evolution of purity Pd under 30 keV He+ irradiation at 573 K was investigated by in-situ transmission electron microscopy.The nucleation,growth,merging,annihilation,size change,number density variation,and types of dislocation loops were analyzed under the influence of irradiation fluence and sample thickness.Both perfect dislocation loops with b =1/2 and faulted dislocation loops with b =1/3 were formed.However,at low irradiation fluence,most of the loops were 1/3 loops.The thickness of TEM foil obviously affected the ratio of 1 /3 loop variants,the size and number density of dislocation loops,and the characteristics of bubble-loop complexes.With the increase of irradiation fluence,the size of dislocation loops increased,but loop volume number density remained almost constant until dislocation loops merged and evolved into dislocation network.There was an obvious interaction between dislocation loops and bubbles,indicating that 1 /3 loop was first formed at the initial stage of irradiation,and when the loop grew to a certain size,obvious helium bubbles appeared inside its region.
其他文献
Both silicon and tin are promising anodes for new generation lithium ion batteries due to high lithium storage capacities (theoretically 4200 mA h g-1 and 992 mA h g-1,respectively).However,their large volumetric expansions (both are above 300 %) usually
P-type semiconductivity has been observed in solid solution series (SrTiO3)1-x(CaCr0.5Nb0.5O3)x (0.0 ≤x ≤ 0.15),which all adopt cubic symmetry and own intense absorption in the visible light region.These solid solutions are superior H2 evolution photocata
1.IntroductionrnHigh strength steels continue to be developed for automotive applications to increase safety and reduce lightweight by down-gauging[1,2].In addition,reducing density is another solution for the lightweight of automotive components[3,4].Alu
The microstructure and room-temperature tensile deformation behavior of the cast CrFeCoNiAl0.7 high-entropy alloy (HEA) were studied in details.The cast HEA consisted of a dual-phase structure of 77.3 vol.% face-centered-cubic (FCC) phase plus 22.7 vol.%
The top-down method was used to fabricate the TiNi1+xSn half-Heusler alloy.Several knotty problems have been solved using the top-down method,including the generation of impurity phases,the visi-ble discrepancy in the grain size of the TiNi2Sn second phas
The influence of different precipitate-dislocation interactions,namely dislocation shearing and bypass-ing mechanisms,on PLC bands and the resultant surface roughness in AlMgScZr alloy was investigated.Three-dimensional surface roughness was quantitativel
Low photothermal conversion efficiency restricts the antibacterial application of photothermal materials.In this work,two-dimensional carbon nanosheets (2D C) were prepared and decorated with Cu nanopar-ticles (2D C/Cu) by using a simple soluble salt temp
The electrochemical properties of a friction stir processed (FSPed) equiatomic CrMnFeCoNi high-entropy alloy (HEA) was investigated in an aerated 0.5 M Na2SO4 electrolyte solution at room temperature.The microstructural analysis reveals a highly refined s
The chain-like prior particle boundaries (PPBs) as a kind of stubborn harmful precipitate will hinder atomic diffusion and particle connection.They can only be broken into nanoscale through thermal defor-mation (1160-1200 ℃).Here,treated by the pulsed ele
The effect of surface gradient nanostructure on the fatigue life of commercial pure (CP) Zr was inves-tigated.Four point bending fatigue tests indicated that the fatigue limit of CP Zr with surface gradient nanostructure was increased by about 28.3 % comp