【摘 要】
:
由于软体机械臂的质量是沿臂的长度连续分布,因此采用拉格朗日方法建立软体机械臂的动力学模型时,涉及计算复杂的积分运算,采用离散化的集中质量模型降低了计算的复杂性,但准确性不足.为了提高软体机械臂动力学建模与仿真的准确度和计算效率,本文采用模态方法对软体机械臂进行运动学描述,并从能量的角度分析软体机械臂动力学特性,研究发现,角速度产生的转动动能计算复杂,影响动力学方程的求解效率.在给定条件下,占总动能的百分比不超过3%,对动力学结果影响很小,可以忽略.在此基础上,提出一种基于质心集中质量描述的软体机械臂动力学
【机 构】
:
哈尔滨工业大学(威海)机械工程系, 山东威海 264209
论文部分内容阅读
由于软体机械臂的质量是沿臂的长度连续分布,因此采用拉格朗日方法建立软体机械臂的动力学模型时,涉及计算复杂的积分运算,采用离散化的集中质量模型降低了计算的复杂性,但准确性不足.为了提高软体机械臂动力学建模与仿真的准确度和计算效率,本文采用模态方法对软体机械臂进行运动学描述,并从能量的角度分析软体机械臂动力学特性,研究发现,角速度产生的转动动能计算复杂,影响动力学方程的求解效率.在给定条件下,占总动能的百分比不超过3%,对动力学结果影响很小,可以忽略.在此基础上,提出一种基于质心集中质量描述的软体机械臂动力学模型,该模型将软体机械臂的连续分布质量模型等效为位于质心的集中质量模型,利用统计的方法计算出动能等效系数,通过动能等效系数实现两种模型的动能匹配.仿真结果表明,与通常将集中质量放置在任意位置(例如,软体机械臂的中点或末端)的集中质量模型相比,该模型兼顾了连续分布质量模型的准确性,以及集中质量模型的计算高效性,能够准确、高效地获得软体机械臂的动力学特性,并且数值计算稳定.
其他文献
将无网格径向基点插值法(radial point interpolation method,RPIM)用于中心刚体?旋转柔性板的动力学分析.基于浮动坐标系方法和一阶剪切变形理论即Mindlin板理论,考虑剪切变形的影响,并计入板面内变形的非线性耦合变形项,采用径向基点插值法描述板的变形场,保留动能中有关非线性耦合变形项的所有高阶量,通过构造高阶形函数避免了径向基点插值法出现剪切闭锁的现象,建立了既能处理薄板问题又能处理中厚板问题的作大范围运动矩形板的高次刚柔耦合动力学模型.高阶形函数可通过添加高阶多项式的
理想的骨折内固定植入物在组织愈合或修复的过程中,其结构性能需要满足不同愈合阶段对生物力学的需求.提出一种对生物可降解复合材料微结构的时变刚度特性进行调控设计的拓扑优化方法,以达到理想的骨折内固定植入物特殊的时变刚度特性需求.使用具有不同降解速率和刚度的两种可降解材料,以相对密度作为设计变量来描述不同材料的分布,以特定降解时间步中间结构的刚度之和最大为优化目标,对复合材料微结构的构型进行拓扑优化设计,使其具有符合骨愈合规律的时变刚度特性.使用均匀腐蚀方法,利用与时间相关的材料残留率描述结构的降解过程,建立考
金属增材制造是近30年发展起来的一种新型制造技术,不同于传统的减材制造过程,它是基于离散-堆积原理,根据设计的三维数据模型,逐层加工获得立体实物的制造技术,具有近净成形、快速制造、设计自由度高等优点,特别适用于具有复杂几何结构的高熔点金属构件的直接成形,在航天航空、核能工业、交通运输、生物医疗等领域具有巨大的技术优势和广阔的应用前景.本文首先介绍了3种典型的金属增材制造技术原理,包括选区激光熔化技术、激光金属沉积技术和选区电子束熔化技术.随后对金属增材制造中的熔合不良、气孔、裂纹等缺陷的形成机理及其控制方
由于增材制造逐层累积的工艺特点,其成形材料力学性能往往不同于传统减材制造材料.在航空航天、核工业以及医疗领域中,对增材制造材料疲劳性能的研究不足导致其很难作为主承力件使用,这制约着增材制造技术的进一步推广使用.本文以增材制造316钢为对象,通过仿真手段研究其高周疲劳性能,研究表明循环载荷下滑移带与晶界处的裂纹萌生是增材制造316钢材料发生高周疲劳的主要原因.根据提出的微观力学模型研究了增材制造316钢的高周疲劳性能,其中分别使用唯象学晶体塑性理论和弹塑性内聚力模型模拟晶粒和晶界的力学行为.为了准确评估增材
真实的地基土体-隧道系统中土体及结构性质往往沿线路纵向变化.为考虑土体与结构沿纵向的变化特性,提出了一种非饱和土-结构系统动力响应分析的多耦合周期性有限元法.首先基于非饱和土的实用波动方程,采用Galerkin法推导了单节点5个自由度的非饱和土ub-pl-pg格式有限元表达式,相比于单节点9个自由度的ub-v-w格式有限元表达式,节省了计算资源.其次引入复拉伸函数,构建完美匹配层边界单元截断无限域.最后采用多周期性模拟结构沿纵向的变化特性,引入自由波传播理论,结合各周期性结构间的连续性条件,实现纵向各周期
激光选区熔化(SLM)可以直接成形近全致密、性能接近锻件的复杂结构金属零件,是金属增材制造(3D打印)领域的热点技术之一.SLM成形过程中粉末颗粒的热/动力学行为复杂,与零件成形缺陷及力学性能紧密相关.本文介绍了离散单元法(DEM)与计算流体力学(CFD)联合建模在SLM中的创新应用,结合粉末床原位测试及成形在线监测,探索SLM粉末铺设和粉末床熔融两个工艺环节的复杂粉体热/动力学行为机制.研究发现,粉末铺设过程中:粉体的黏结效应、壁面效应和渗流效应3种机制相互竞争、共同支配粉末动力学行为并最终决定粉末床铺
丙烯酸弹性体VHB 4910作为一种重要的介电弹性体,在软体机器人、致动器、俘能器和智能隔振器等领域有很好的应用前景.但材料的非线性黏弹性对其力学行为有显著影响.近来分数阶模型在复杂材料的建模中取得了成功.本文基于分数阶有限变形Kelvin-Voigt流变学模型建立弹性体的三维张量本构,并进一步推导单向拉伸情况下的本构关系.随后对VHB 4910完成一系列不同拉伸速率下的单向拉伸实验.基于本构方程的可加性,首先分别利用Neo-Hookean,Mooney-Rivlin和Gent模型完成超弹性弹簧单元的参数
选区激光熔化中,铺粉质量会极大地影响产品的最终质量.然而,成形区粗糙表面对铺粉质量影响的研究较少.因此,本文以成形区粗糙表面作为新的铺粉基板,通过离散元法,研究铺粉过程中成形区的表面形貌和工艺参数对铺粉质量的影响,并分析铺粉过程中金属粉末在成形区粗糙表面的颗粒动力学和颗粒沉积机制.结果表明,将激光扫描方向与铺粉方向旋转一定角度可有效提高粉末层质量,增加铺粉层厚可减小成形区粗糙表面对铺粉质量的影响.减小搭接率可提高成形区对颗粒的滞留能力,从而使更多的颗粒沉积在成形区,提高粉床填充密度,但是粉末颗粒会与成形区
针对基于磁流变液阻尼器的半主动控制系统中存在的时滞问题,采用了一种将可控的时滞变量引入半主动控制切换条件的控制策略,研究了考虑时滞的天棚阻尼控制切换条件对半主动阻尼减振系统的影响,分析了含有分数阶Bingham模型的线性刚度系统在基础激励下的振动特性.利用平均法得到了系统在含时滞半主动控制策略下主共振响应的近似解析解,根据Lyapunov理论分析了系统的稳定性.通过数值解验证了近似解析解的准确性,二者具有较好的一致性.利用近似解析解分析了固定激励频率下时滞对系统幅频响应特性的影响,以及主共振峰值响应和共振