论文部分内容阅读
摘要:数量关系是揭示数量之间的一种内在关系,也是解决问题的关键,在小学数学教学中,数量关系这一内容成为教师越来越关注的话题,它不仅能够发展学生的逻辑思维,还能够他们更加理解数学知识的本质特征,强化对知识的理解程度。因此,本文笔者对数量关系展开研究。
关键词:小学数学;数量关系;生活问题;运算意义;类比题目
小学是数量关系形成的启蒙时期,也是初步感受数量关系的基础阶段。数量关系具有一定的抽象性和内隐性,由于小学生的思维方式以具体形象为主,在分析数量关系时常常陷入思维的误区中,而数量关系的目的是使用数量,并对学生解决问题具有至关重要的作用,因此,教师在教学中,应遵循学生的认知发展特点,重视数量关系这一抽象知识的教学,这样不仅能够培养学生运用数学关系解决问题的意识,还能使学生形成一种自觉的心智活动,为今后数学知识的学习奠定基础。本文笔者以小学数学为切入点,从“利用生活问题、挖掘运算意义、运用类比题目”三个方面对数量关系的教学进行分析与探究。
一、利用生活问题,揭示数量关系
生活化的数学问题作为一种模型,是映射数量关系的重要依据,也是深入挖掘数量关系的主要来源,因此,教师应充分利用学生的原有认知结构,重视学生的已有生活经验,让学生从实际生活问题中找到有效信息,分析数量关系,并探索出解决问题的方法,这样不仅能够使学生对数量关系有一种更深层理解,还能够使学生灵活运用数量关系解决实际生活问题,从而使学生分析问题、解决问题的能力得到双向发展。
笔者在进行“解简易方程”教学中,由于数量关系是列方程解应用题的关键,为了使学生了解日常生活中常见的几种数量关系,并能够揭示数量关系,考虑到学生的年龄特点,挖掘了趣味性的生活问题,并以多媒体技术来呈现,展示问题:“测量物体的重量,天平的左端为杯子和水,天平的右端是300g的砝码,如果我们知道杯子的重量为100g,则水的重量为多少克?”这一问题引发学生的思考,他们结合自己原有认知,揭示了问题中的数量关系,并分析出“砝码的重量等于水的重量与杯子重量之和”这一数量关系,因此,从生活化问题的角度出发,更易于学生接受方程的相关知识,并降低了学生理解抽象数量关系的难度,从而提高他们分析问题的能力。
二、挖掘运算意义,概括数量关系
四则运算是最原始的数量关系,数量关系也是伴随着四则运算在逐步进行,因此,两者是相辅相成的,而教师作为教学的研究者,应引导学生挖掘运算的意义,让学生切实感受其中所渗透的数量关系,这样不仅能够使学生在理解数量列式原理的基础上感受到数量关系的形成过程,还能加深学生对数量关系本质的理解,从而概括出蕴含在运算中的数量关系。
笔者在进行“小数乘整数”教学中,为了使学生能够灵活运用小数乘整数的计算算法,首先创设情境,提出问题:“一个风筝3.5元,买3件风筝多少钱?”由于学生已经掌握了小数加法运算,进而列出算式:“3.5+3.5+3.5=10.5元”,在此基础上,引导学生根据整数乘法的算理体会小数乘法的运算过程,学生总结出了小数乘整数的意义为:“几个相同数相加的简便运算”,并概括出了“总价等于單价乘以数量”这一数量关系,这样学生就会潜移默化的运用运算的意义来分析问题和解决问题,并不断感受到数量关系的存在,为后续数量关系的学习奠定基础。
三、运用类比题目,分析数量关系
由于小学生的辨别能力还未发展完全,在面对一些相似问题时,知觉整体性还处于基础阶段,对问题中的数量关系辨别还不清晰,导致他们常常产生思维的偏差,因此,教师作为学生发展的促进者,应运用类比题目,让学生深入分析两个题设的不同之处,这样不仅能够使学生分析问题的思维得以提升,逐步形成分析综合问题的思想,还能使学生寻找中间问题的速度更高,辨别更加清晰,从而为以后解决更加复杂的问题奠定基础。
考虑到学生在计算平行四边形面积时,常常产生思维的偏差,总是找到一个底的长度和平行四边形的另一个底所对应的高,从而求出平行四边形的面积,而未考虑平行四边形面积中底和高所存在的关系,因此,笔者出示两个相同的平行四边形,并在平行四边形上标出已知条件,条件一:“一个底的长度为3cm,相对应的高为2cm”,条件二:“一个底的长度为3cm,另外一个底所对应的高为1cm”,通过这两个类比的题目,学生们更加深刻体会到了平行四边形面积和长、底的数量关系,此外,学生从被动探索变为主动探究,从而感受到平行四边形面积的本质特征。
综上所述,数量关系作为解决问题的有力工具,不仅能够培养学生应用数量关系的意识,还能提高学生分析问题和解决问题的能力,因此,教师在教学过程中,应结合学生熟悉的生活经验,利用生活问题来揭示数量关系,同时,也应挖掘运算的意义,使学生概括出数量关系,此外,运用类比题目,引导学生分析数量关系,从而体会数学知识的内在本质。
参考文献:
[1]储月锋.小学数学基本数量关系认知教学浅析[J].新课程(小学),2015(1):22-23.
[2]赵怡.试论小学数学应用题教学中数量关系分析能力的培养[J].神州,2019(9):184-184.
关键词:小学数学;数量关系;生活问题;运算意义;类比题目
小学是数量关系形成的启蒙时期,也是初步感受数量关系的基础阶段。数量关系具有一定的抽象性和内隐性,由于小学生的思维方式以具体形象为主,在分析数量关系时常常陷入思维的误区中,而数量关系的目的是使用数量,并对学生解决问题具有至关重要的作用,因此,教师在教学中,应遵循学生的认知发展特点,重视数量关系这一抽象知识的教学,这样不仅能够培养学生运用数学关系解决问题的意识,还能使学生形成一种自觉的心智活动,为今后数学知识的学习奠定基础。本文笔者以小学数学为切入点,从“利用生活问题、挖掘运算意义、运用类比题目”三个方面对数量关系的教学进行分析与探究。
一、利用生活问题,揭示数量关系
生活化的数学问题作为一种模型,是映射数量关系的重要依据,也是深入挖掘数量关系的主要来源,因此,教师应充分利用学生的原有认知结构,重视学生的已有生活经验,让学生从实际生活问题中找到有效信息,分析数量关系,并探索出解决问题的方法,这样不仅能够使学生对数量关系有一种更深层理解,还能够使学生灵活运用数量关系解决实际生活问题,从而使学生分析问题、解决问题的能力得到双向发展。
笔者在进行“解简易方程”教学中,由于数量关系是列方程解应用题的关键,为了使学生了解日常生活中常见的几种数量关系,并能够揭示数量关系,考虑到学生的年龄特点,挖掘了趣味性的生活问题,并以多媒体技术来呈现,展示问题:“测量物体的重量,天平的左端为杯子和水,天平的右端是300g的砝码,如果我们知道杯子的重量为100g,则水的重量为多少克?”这一问题引发学生的思考,他们结合自己原有认知,揭示了问题中的数量关系,并分析出“砝码的重量等于水的重量与杯子重量之和”这一数量关系,因此,从生活化问题的角度出发,更易于学生接受方程的相关知识,并降低了学生理解抽象数量关系的难度,从而提高他们分析问题的能力。
二、挖掘运算意义,概括数量关系
四则运算是最原始的数量关系,数量关系也是伴随着四则运算在逐步进行,因此,两者是相辅相成的,而教师作为教学的研究者,应引导学生挖掘运算的意义,让学生切实感受其中所渗透的数量关系,这样不仅能够使学生在理解数量列式原理的基础上感受到数量关系的形成过程,还能加深学生对数量关系本质的理解,从而概括出蕴含在运算中的数量关系。
笔者在进行“小数乘整数”教学中,为了使学生能够灵活运用小数乘整数的计算算法,首先创设情境,提出问题:“一个风筝3.5元,买3件风筝多少钱?”由于学生已经掌握了小数加法运算,进而列出算式:“3.5+3.5+3.5=10.5元”,在此基础上,引导学生根据整数乘法的算理体会小数乘法的运算过程,学生总结出了小数乘整数的意义为:“几个相同数相加的简便运算”,并概括出了“总价等于單价乘以数量”这一数量关系,这样学生就会潜移默化的运用运算的意义来分析问题和解决问题,并不断感受到数量关系的存在,为后续数量关系的学习奠定基础。
三、运用类比题目,分析数量关系
由于小学生的辨别能力还未发展完全,在面对一些相似问题时,知觉整体性还处于基础阶段,对问题中的数量关系辨别还不清晰,导致他们常常产生思维的偏差,因此,教师作为学生发展的促进者,应运用类比题目,让学生深入分析两个题设的不同之处,这样不仅能够使学生分析问题的思维得以提升,逐步形成分析综合问题的思想,还能使学生寻找中间问题的速度更高,辨别更加清晰,从而为以后解决更加复杂的问题奠定基础。
考虑到学生在计算平行四边形面积时,常常产生思维的偏差,总是找到一个底的长度和平行四边形的另一个底所对应的高,从而求出平行四边形的面积,而未考虑平行四边形面积中底和高所存在的关系,因此,笔者出示两个相同的平行四边形,并在平行四边形上标出已知条件,条件一:“一个底的长度为3cm,相对应的高为2cm”,条件二:“一个底的长度为3cm,另外一个底所对应的高为1cm”,通过这两个类比的题目,学生们更加深刻体会到了平行四边形面积和长、底的数量关系,此外,学生从被动探索变为主动探究,从而感受到平行四边形面积的本质特征。
综上所述,数量关系作为解决问题的有力工具,不仅能够培养学生应用数量关系的意识,还能提高学生分析问题和解决问题的能力,因此,教师在教学过程中,应结合学生熟悉的生活经验,利用生活问题来揭示数量关系,同时,也应挖掘运算的意义,使学生概括出数量关系,此外,运用类比题目,引导学生分析数量关系,从而体会数学知识的内在本质。
参考文献:
[1]储月锋.小学数学基本数量关系认知教学浅析[J].新课程(小学),2015(1):22-23.
[2]赵怡.试论小学数学应用题教学中数量关系分析能力的培养[J].神州,2019(9):184-184.