论文部分内容阅读
The structural features of soil in debris flow-triggering region play an important role in the formation and evolution of debris flow. In this paper, a case study on the fractal of soil particle-size distribution (PSDFs) and pore-solid (PSFs) in Jiangjia Ravine was conducted. The results revealed that the soil in Jiangjia Ravine had significant fractal features and its PSDF and PSF had the same variation trend despite different type of soils in debris flow-triggering region: residual soil (RS)>debris flow deposit (DFD)>clinosol (CL), their fractal dimension of PSDFs are respectively between 2.62 and 2.96, 2.52 and 2.68, 2.37 and 2.52; and the fractal dimension of PSFs are respectively between 2.75 and 2.95 , 2.57 and 2.72, 2.59 and 2.64. The fractal dimension of soil reflected its complexity as a self-organizing system and was closely related to the evolution of soil in debris flow-triggering region.
The structural features of soil in debris flow-triggering region play an important role in the formation and evolution of debris flow. In this paper, a case study on the fractal of soil particle-size distribution (PSDFs) and pore-solid (PSFs) in Jiangjia Ravine was conducted. The results revealed that the soil in Jiangjia Ravine had significant fractal features and its PSDF and PSF had the same variation trend despite different type of soils in debris flow-triggering region: residual soil (RS) (DFD)> clinosol (CL), their fractal dimension of PSDFs are respectively between 2.62 and 2.96, 2.52 and 2.68, 2.37 and 2.52; and the fractal dimension of PSFs are respectively between 2.75 and 2.95, 2.57 and 2.72, 2.59 and 2.64. The fractal dimension of soil reflected its complexity as a self-organizing system and was closely related to the evolution of soil in debris flow-triggering region.