论文部分内容阅读
为了能设计出一个优良的神经网络结构使得网络在保持良好性能的同时使规模最小化,作者引入了一种新的目标函数,希望能在模型的可靠性和规模之间找到一个适当的折中.基于此新的目标函数提出一种改进的BP算法,同时在改进的算法中采用自适应调整动量和学习率的方法以加快收敛速度和避免误差陷入局部极小值.将改进BP算法用于手写数字识别实验,结果表明,新算法有很好的实用价值.