把握结构助力衔接

来源 :小学教学研究·理论版 | 被引量 : 0次 | 上传用户:mi33123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  学习是基于学生原有知识经验基础上的自我建构,学生头脑中的知识结构组织得越好,就越利于保存和应用。因此,在学习过程中不仅要关注学生外显的行为,更要关注学生内在“结构”的掌握。学生只有时刻感受到内在“结构”的存在,才会重视它、关注它,心灵才能“敏感”起来,从而更加有力地助推教学衔接。
  一、文本立场,纵横迁移感悟知识结构
  纵横迁移:横是指各版本教材的横向对比,纵是指例题与练习间纵向迁移。教师在纵横反复对比研读揣摩中,因“困”而备,择优而设,把握知识基本结构,真正实现为迁移而教。
  1.在文本“无声”处读出“心声”
  以《两位数减一位数(退位减)》为例。苏教版的这一课是先进行整十数减一位数的教学,再进行一般两位数减一位数的教学。浙教版是从数字2、3、6、7、9中选三个,组成两位数减一位数的算式,主要分析两类算式如36-2和36-9。直接重点教学36-9的计算方法并和36-2的方法进行比较。北师大版则是出示1个例题33-7,先算13-7=6再算20 6=26是教材主导的算法,竖式教学同步展开,并从原理和算法上进行沟通:个位上的3减7不够减,从十位借1。13-7=6 十位上的3借走1还剩2。进而引发思考:你还有别的算法吗?这样的编排两位数减一位数(退位减)口算的意图对于读者而言显而易见。但是各版本教材都把这一内容安排在一年级下册,其退位的原理和方法是后续学习减法竖式的基础。
  如此在文本“无声”处读出“心声”,在差异中读出共性,我们就会发现退位原理和方法的掌握就是学生迁移能力运用从而形成知识结构化的落点所在。
  2.在文本“单一”处读出“整体”
  小学数学教学可以分成两阶段,一是“教结构”阶段,以发现方式在解决问题中发现和建构知识,充分感悟知识内在关联的结构存在,逐步形成学习的方法结构;二是“用结构”阶段,主要采用迁移的方式,让学生运用学习的方法与步骤结构,主动学习和掌握与结构类似的相关知识。
  知识的展开过程要有利于学生进行知识的迁移。要让学生建立结构化的知识联系,那就需要在“教结构”中,让学生学会迁移的能力,从而能在“用结构”中运用并不断尝试迁移,从而感悟结构的力量。
  学习迁移的认知成分中很重要的一类便是概括和综合。综合是将分析得出的个别事物的属性联合为一个整体,从而形成对事物的整体认识。《两位数减一位数(退位减)》的内容看似进行单一的两位数减一位数退位的口算,但学生从口算的对比中凸显退位原理,分析综合,以“一”见“整”,在后续的竖式等类同学习中能进行顺利迁移。
  二、儿童在场,上下迁移体悟过程性结构
  这里的上下有两层意思:一指教师和学生之间,如何让学生读懂教师的意图,实现师生间的学习迁移;二是指环节间过程性结构的类同迁移。
  1.上传下达:童眼看“数”助推迁移
  笔者认为,教师的基本功之一就是精心备足了课,依然能够童眼看“数”,助推迁移。如笔者在教学《认识分数》时由情境“分一分”产生分数,提问:面对分数这个新概念,你的小脑瓜中是不是产生了很多好奇的问题?遵循儿童立场,满足了学生的好奇探索。同时为面临新事物、学习新知识的学生一个整体的展现,为之后学生迁移把握过程结构埋下了伏笔。
  2.上行下“效”:累积运用迁移经验
  此处的上下为上下环节,在上面环节中以这样的过程推进,下面的环节学生就能进行仿效,以此不断地累积运用迁移经验。
  (1)敞亮未来道——预示结构运用迁移。
  《认识分数》从认识二分之一时发现问题、提出问题、分析问题(动手操作—对比辨析)、解决问题(充分认识二分之一)到认识几分之一环节,也以同样方式努力引导学生从发现到提问,不断让学生了解和把握过程结构,并适切融入新课标提出的“四能”,学生在面对新概念的学习时,就能运用相似的过程结构进行迁移探究。
  (2)回首来时路——回顾过程提炼结构。
  有时探索过程就是摸着石头过河,累积的只是些感性、零散的认识,回顾过程更有助于学生提升迁移经验。如可进行课终谈话:刚才我们二年级小朋友一起学习了三年级的内容,下次你遇到新事物还害怕吗?我们是怎样学习的?这样师生共同回顾归纳,对获取过程进行整体审视,有利于学生在相似学习中以类同方式推进过程。
  三、问题磁场,内外迁移体悟学习方法结构
  整个面积计算教学可以看作一个长课程,平行四边形面积采用“教结构”,其后的面积学习采用“用结构”。在“教结构”过程中不断以问促思,直指学习本质,让学生不断体悟“想特征—找联系—试转化”的方法结构。
  1.核心问题引导,自主探索
  提问:怎样求平行四边形的面积?可转化成什么图形?怎样转化?
  活动感悟:可以把平行四边形沿高剪拼成长方形进行研究。
  2.启发性问题助推内省,直逼本义
  追问:为什么要沿高剪开呢?不沿高行吗?
  交流体悟:平行四边形与长方形的区别在于,长方形四个角都是直角,要拼成长方形必须产生直角,沿高剪就会产生直角。
  3.发散性问题追加外显,开阔思路
  小结:怎样实现转化?我们需要思考转化前后图形的特征,找到它们之间的联系来思考怎样转化。(板书:想特征—找联系—试转化)
  二次追问:是不是只能沿这一条高剪?沿其他的行吗?
  三次追问:要拼成长方形一定要沿高剪吗?
  案例打破一贯“匀速运动”的教学方式,用长课程两段教学,即:平行四边形面积计算的教结构是慢速运动,不仅让学生掌握平行四边形的面积计算方法,也为后续面积计算的自主学习提供多样化的结构支撑,促进学生更深层次地把握平面图形的特征及它们之间内在的联系,开发和提升学生类比模仿的创造能力,并帮助学生建立起关系分析的思维习惯和方式,让学生形成知识结构、体悟出“想特征—找联系—试转化”的方法结构并发现形成结构的方法,拥有自主学习的能力。为后续其他图形的面积计算教学做“加速运动”。以下为“结构的魅力”在后续三角形面积的学习中焕发出的强盛生命力。
  方法1:用两个完全相同的三角形拼成一个平行四边形。
  方法2:过斜边的中点作底边的平行线(中位线),旋转成一个平行四边形。
  方法3:找两斜边的中点,从中点作底边的垂直线段,分别旋转拼成长方形。
  方法4:从三角形的高出发,同时找到中位线,分别旋转拼成长方形。
  方法5:将三角形折成一个长方形。
  数学是怎样的?是令人生畏,谈“数”色变?数学留给孩子们的又是什么?是数学好玩,还是即便努力却似乎总也难以掌握?真正的数学应该是简约而深刻的。简约在于领悟到了知识、方法结构,形成了结构化的认识,心灵得到了“结构”的滋养而变得“敏感”:看到一粒沙中的世界,一棵树后的森林,把握本质了然于胸,自主学习就有了拐杖,求知成为一种内在的需求,学生能自主并富有成效地参与到类同的学习过程中去。拥有了一颗因为数学学习而敏感的心灵,这应该就是学生从学校带走的最有价值的东西。?
其他文献
随着我国社会经济的快速发展,各个行业领域都取得了很大的进步,我国对于发电厂的设备配置方面也做得非常好,并且技术也在进行不断的提高与优化,但是在一些大型的火力发电厂中
【正】网络流行语是网络时代新兴的语言现象,被很多人称为信息时代的"社会方言"。同传统的书面语言相比,网络语言少了很多束缚,网民们的思维可以自由驰骋,天马行空且构思巧妙
《数学课程标准》明确指出:让学生在具体、生动、现实的情境中学习数学,体验和理解数学。所谓教学情境是指一种特殊的教学环境,是教师为了支持学生的学习,根据教学目标、内容和学生的年龄特征有目的地创设的教学时空和教学环境。它是学生理解和掌握知识、形成技能、发展心理品质的重要源泉,是沟通现实生活与数学学习、具体问题与抽象概念之间的桥梁。然而,在实施新课程的过程中,有的教师为了体现“现代性”,刻意追求形式,东
马王堆汉墓中出土的帛书《经法》四篇是反映黄老思想的重要文本,对于汉初政治的无为而治发挥了重要作用。特别是其中的无为而不无为、注重规章制度承袭,强调等级制度和官僚体
随着现代网络科学技术的发展与人们生活要求的提高,有线电视网络中数字电视技术的应用成为发展潮流。数字电视具有画面清晰、信号传输稳定、频道丰富以及操作性强等优势,能够满
针对单个制造商、单个网络平台和单个零售商构成的双渠道E-闭环供应链(E-CLSC),研究了供应链系统的最优决策及协调问题。在制造商不考虑公平关切的情况下,分别对集中决策和分
五大连池是缺水比较严重的城市,全市河流、湖泊水资源总量为14.67亿m^3,地下水资源总量为2.33亿m^3。但是全市种植业除极少一部分水田可以利用该水源外,其余全部依赖于自然降水。
为深入贯彻全国病险水库除险加固工作会议精神,6月30日,全省病险水库除险加固整改工作会在哈尔滨市召开,厅长陆兵做重要讲话。会议要求各级水务部门对前段审计揭示的问题要立即
随着生产施工技术的不断发展,静压高强预应力管桩在实际施工中被广泛运用,同时在行业中也得到了很好的应用。但面对这种新型技术,各生产施工部门对于其把控依旧存在不足。基
将社会主义核心价值观融入高校校园文化建设中,引导青年学生形成社会主义核心观是当今研究的一个重点课题。调查研究发现,青年学生对社会主义核心价值观具体内容的认知还比较有