论文部分内容阅读
提出一种基于主成分分析(PCA)和多约简支持向量机(SVM)的多级说话人辨识方法。首先用PCA对注册说话人进行快速粗判决,再用多约简SVM进行最后决策。此多约简SVM有两个约简步骤,即用PCA和样本选择算法分别减少训练数据的维数和个数。理论分析和实验结果表明:该方法可以大大减少系统的存储量和计算量,提高训练和识别时间,并具有较好的鲁棒性。