论文部分内容阅读
单个图像中的人群计数在计算机视觉领域中备受关注,因为其在公共安全方面具有重要作用.例如,在人群聚集的场景中监控设备可以实时监测人群数量变化,对过度拥挤和异常情况进行预警以预防安全事故的发生.然而,由于受到遮挡、透视扭曲、尺度变化和背景干扰的严重影响,在单个图像中对人群计数的预测要达到较高精确度是极其困难的,其面临着巨大的挑战.在本文中,我们提出了一个名为FF-CAM的创新性模型来计算图像中的人群数量.它首先将主网络低层的特征图与高层的特征图合并,实现不同尺度的特征融合,且无需额外的分支或子任务,解决