论文部分内容阅读
A new method was proposed to identify speech-segment endpoints based on the empirical mode decomposition(EMD) and a new wavelet entropy ratio with improving the accuracy of voice activity detection.With the EMD, the noise signals can be decomposed into several intrinsic mode functions(IMFs). Then the proposed wavelet energy entropy ratio can be used to extract the desired feature for each IMFs component. In view of the question that the method of voice endpoint detection based on the original wavelet entropy ratio cannot adapt to the low signal-to-noise ratio(SNR)condition, an appropriate positive constant was introduced to the basic wavelet energy entropy ratio with effectively improved discriminability between the speech and noise. After comparing the traditional wavelet energy entropy ratio with the proposed wavelet energy entropy ratio, the experiment results show that the proposed method is simple and fast. The speech endpoints can be accurately detected in low SNR environments.
A new method was proposed to identify speech-segment endpoints based on the empirical mode decomposition (EMD) and a new wavelet entropy ratio with improving the accuracy of voice activity detection. With the EMD, the noise signals can be decomposed into several intrinsic mode functions (IMFs). Then the proposed wavelet energy entropy ratio can be used to extract the desired feature for each IMFs component. In view of the question that the method of voice endpoint detection based on the original wavelet entropy ratio can not adapt to the low signal- to-noise ratio (SNR) condition, an appropriate positive constant was introduced to the basic wavelet energy entropy ratio with effectively improved discriminability between the speech and noise. After comparing the traditional wavelet energy entropy ratio with the proposed wavelet energy entropy ratio, the experiment results show that the proposed method is simple and fast. The speech endpoints can be accurately detected in low SNR environments.