论文部分内容阅读
使用误差反向传播网络(BPN)和约当网络(JN)两种人工神经网络(ANN)以及支持向量机(SVM)对降雨量进行了1 h和3 h预报的研究, 并与交叉相关法(CCM)外推预报的结果进行了比较.针对安徽省2003年6~7月的降水过程, 比较了网络(文中指BPN、 JN和SVM)和CCM预报降雨量与实况降雨量的雨带分布、强降雨区域和强度; 使用命中率(HR)、虚警率(FAR)、漏报率(NAP)、临界成功指数(CSI)、相关系数(CC)和均方根误差(RMSE)这6个指标并结合天气分析检验网络和CCM的预报效果.结果表明: 网络和CCM对雨带和强降雨区域的预报比较准确, 但是对强降雨中心位置和强度的预报与实况存在差异; 在使用HR、 FAR、 NAP和CSI检验预报效果时设定的阈值对预报结果的评价有影响; 预报的中小尺度结构与天气分析的结果一致; 网络与CCM 以及不同的网络之间的预报结果存在着差异; 连续预报的结果表明, 与CCM相比, 网络对3 h预报的效果优于1 h 的.